Исторический обзор развития математических представлений у детей дошкольного возраста

Педагогика сегодня » Процесс формирования элементарных математических представлений детей дошкольного возраста » Исторический обзор развития математических представлений у детей дошкольного возраста

Страница 1

Предоснову становления методики развития математических представлений у детей дошкольного возраста как научной дисциплины составляло устное народное творчество (сказки, считалки, загадки, шутки и т. д.). В ходе их освоения дети не только овладевали пересчетом предметов, но и умением воспринимать и осознавать изменения, происходящие в окружающей их действительности (изменения цветовые, природные, пространственные и временные). Это обеспечивало естественное развитие у детей некоторых представлений, смекалки и сообразительности.

В 1574 году первопечатник Иван Федоров в созданной им печатной учебной книге — «Букваре» предложил упражнения для обучения детей счёту. В устном народном творчестве тех лет также отражены взгляды педагогов и родителей на математическое развитие ребёнка.

В XVIII-XIX вв. вопросы содержания и методов обучения детей дошкольного возраста арифметике и развития представлений о размерах, мерах измерения, времени и пространстве нашли отражение в передовых педагогических системах воспитания, разработанных Я.А. Коменским, И.Г. Песталоцци, К.Д. Ушинским, Л.Н. Толстым и т.д. Педагоги той эпохи под влиянием требований развивающейся практики пришли к выводу о необходимости подготовки детей к усвоению математики в школе. Ими высказывались определённые предложения о содержании и методах обучения детей, в основном в условиях семьи.

Чешский мыслитель-гуманист и педагог Я.А.Коменский (1562-1670) в программу по воспитанию дошкольников включил арифметику: усвоение счёта в пределах первых двух десятков (для 4-6-летних детей), определение большего и меньшего из них, сравнение предметов и геометрических фигур, изучение общеупотребляемых мер. Передовые идеи в обучении детей дошкольной арифметике также высказывал русский педагог К.Д. Ушинский (1824-1872). Писатель и педагог Л.Н.Толстой издал в 1872 году «Азбуку», одна из частей которой называлась «Счёт». Л.Н. Толстой предлагал учить детей счёту «вперёд» и «назад» в пределах сотни и нумерации, основываясь при этом на детском практическом опыте, приобретённом в игре.

Методы развития у детей представлений о числе и форме нашли своё отражение и дальнейшее развитие в системах сенсорного воспитания немецкого педагога Ф. Фределя (1782-1852), итальянского педагога М. Монтессори (1870-1952) и др. В целом обучение математике по системе Марии Монтессори начиналось с сенсорного впечатления, затем осуществлялся переход к пониманию символа, что делало математику привлекательной и доступной даже для 3-4-летних детей.

Итак, передовые педагоги прошлого, русские и зарубежные, признали роль и необходимость первичных математических знаний в развитии и воспитании дошкольников, выделяли при этом счёт в качестве средства умственного развития и настоятельно рекомендовали обучать детей ему как можно раньше, примерно с 3-х лет.

Становление методики развития элементарных математических представлений в XIX- начале XX вв. также происходило под непосредственным воздействием идей реформирования школьных методов обучения арифметике. Особо выделялись два направления: с одним из них связан так называемый метод изучения чисел, или монографический метод, а с другим — метод изучения действий, который назвали вычислительным. Оба метода сыграли положительную роль в дальнейшем развитии методики, которая вобрала в себя приёмы, упражнения, дидактические средства одного и другого метода.

В конце XIX — начале XX вв. были широко распространены идеи обучения математике без принуждения и дидактичности, но без лишней занимательности. Математики, психологи, педагоги разрабатывали математические игры и развлечения, составляли сборники задач на смекалку, преобразование фигур, решение головоломок. Широко применялись в обучении и развитии детей математические игры, в ходе которых был необходим подробный и чёткий анализ игровых действий, возможность проявить смекалку в ходе поисков, самостоятельность.

В 20-50-е гг. XX в. не наблюдалось особых различий в подходах к отбору содержания и методов обучения. Предполагалось развивать способность ориентироваться в пространстве и времени, различать формы и величины, числа и действия над ними, представления о мерах и делении целого на части.

Разработка психолого-педагогических вопросов методики развития математических представлений у детей дошкольного возраста в 60-70-е гг. XX столетия строилась на основе методологических позиций советской психологии и педагогики. Изучались закономерности становления представлений о числе, развития счётной и вычислительной деятельности. В 80-е гг. начали обсуждаться пути совершенствования, как содержания, так и методов обучения детей дошкольного возраста математике. В начале 90-х гг. XX в. наметилось несколько основных научных направлений.

Страницы: 1 2 3

Материалы о воспитании и обучении:

Личностно-ориентированные технологии обучения
Личностно-ориентированные технологии в качестве планируемых результатов предполагают не столько строго фиксированные знания и специальные умения по конкретной учебной дисциплине, сколько индивидуальные особенности субъекта познания и предметной деятельности. Итак, личностные новообразования учащихс ...

Иоганн Генрих Песталоцци
И.Г. Песталоцци – швейцарский педагог. Родился в Цюрихе в семье глазного врача. Он рано лишился отца и воспитывался матерью. Образование он получил обычное для того времени: сначала окончил начальную школу на немецком языке, потом – традиционную латинскую школу и школу повышенного типа, готовившую ...

Характеристика понятия неравенства. Неравенства с одной переменной
Пусть а и b – два числовых выражения. Соединим их знаком ">" (или <). Получим предложение a > b (или a < b), которое называют числовым неравенством. Например, если соединить выражение 6 + 2 и 13-7 знаком «>», то получим истинное числовое неравенство 6 + 2 > 13 - 7. Если ...

Мотивация в процессе обучения

Мотивация в процессе обучения

В организации современного учебного процесса большую роль играет мотивация студентов. Мотивация студентов является одной из самых сложных педагогических проблем настоящего.

Навигация

Copyright © 2019 www.lavill.ru