Геометрическое место точек

Страница 2

Закрепление

1. Верно ли утверждение, что отрезок АВ, параллельный данной прямой а и удаленный от нее на 5 см, является геометрическим местом точек, удаленных от данной прямой на 5 см? [Нет, так как хотя отрезок АВ и состоит из точек с данным свойством, но не все точки плоскости с данным свойством ему принадлежат, или не выполняется условие: ели точка обладает данным свойством, то она принадлежит отрезку АВ.]

Условие задачи можно варьировать: взять два отрезка, отрезок и прямую и, наконец, две прямые (рис.43).

Рис.43.

2. Можно ли прямую АВ, где А и В - различные точки прямой, считать геометрическим местом точек, лежащих между точками А и В? [Нет, так как про прямую АВ нельзя сказать, что она состоит из точек, лежащих между точками А и В, т.е. не выполняется условие: ели точка принадлежит прямой АВ, то она лежит между точками А и В.]

Затем в условиях данной задачи заменяется прямая лучом АВ, а луч отрезком АВ.

3. Можно ли отрезок АВ, параллельный двум параллельным прямым а и b и одинаково отстоящий от них, считать геометрическим местом точек, одинаково удаленных от двух параллельных прямых? [Нет, так как не выполняется условие: если точка одинаково удалена от двух данных параллельных прямых, то она принадлежит отрезку АВ.]

4. Найдите геометрическое место точек, одинаково удаленных от двух параллельных прямых а и b.

Решение. Проведем общий перпендикуляр DM прямых а и b и найдем его середину N (рис.44). Через точку N проведем прямую m, параллельную прямой а (она будет параллельна и прямой b). Докажем, что прямая m есть искомое геометрическое место точек.

Рис.44.

Доказательство.1) Докажем, что если точка К принадлежит прямой m, то она удалена от прямых а и b на расстояние, равное р, где р-длина отрезка DN или MN. Так как параллельные прямые равноотстоящие, то точка К удалена как от прямой а, так и от прямой b на расстояние, равное р.2) Докажем, что точка S, одинаково удаленная от прямых а и b, принадлежит прямой m. Так как расстояние между прямыми а и b равно 2р, то точка S середина отрезка СЕ, перпендикулярного к прямым а и b и равного 2р. Пусть Sm, а СЕ пересекает m в точке R. Тогда RC=RE=p по доказанному в первой части, т.е. отрезок СЕ имеет две середины R и S, что невозможно, значит, Sm.

Страницы: 1 2 

Материалы о воспитании и обучении:

Классификация современных информационных технологий
Существующие в настоящее время ИТ классифицируются по различным признакам. ИТ, в частности, различаются по типу обрабатываемой информации, но могут объединяться в интегрированные технологии. любая классификация в известной мере условна, поскольку большинство этих ИТ позволяет поддерживать и другие ...

Понятие "культурное поле" и способы его формирования
Идея воспитания человека в контексте культуры достаточно глубоко разработана в трудах таких учёных, как Е.В.Бондаренко, Е.Н.Ильин, М.С.Каган, Н.И.Кияшенко, В.И.Разумный, Т.П.Малькова, В.Я.Нечаева и др. Л.А. Орнатская подчёркивает, что для правильного целостного определения сущности культуры необход ...

Характеристика речевого материала
Исследование произношения, а именно, выразительности речи, детей с нарушенным слухом проводилось на материале слов и фраз. Мы считаем это наиболее целесообразным, так как на материале слов и фраз можно получить представление о сформированности у ребенка фонетической системы устной речи: качество пр ...

Мотивация в процессе обучения

Мотивация в процессе обучения

В организации современного учебного процесса большую роль играет мотивация студентов. Мотивация студентов является одной из самых сложных педагогических проблем настоящего.

Навигация

Copyright © 2020 www.lavill.ru