Традиционный подход к формированию понятия "неравенства"

Страница 2

Рассматривая, например, неравенство х + 3 < 10, учащиеся путем подбора находят, при каких значениях буквы х значение суммы х + 3 меньше, чем 10. В каждом таком задании дается множество чисел — значений переменной. Ученики подставляют значения буквы в выражение, вычисляют значение выражения и сравнивают его с заданным числом. В результате такой работы выбирают значения переменной, при которых данное неравенство является верным.

Термины «решить неравенство», «решение неравенства» не вводятся в начальных классах, поскольку во многих случаях ограничиваются подбором только нескольких значений переменной, при которых получается верное неравенство.

Позднее в упражнениях с неравенствами значения переменной не даются, учащиеся сами подбирают их. Такие упражнения, как правило, выполняются под руководством учителя.

Моро М.И. предлагает ознакомить детей со следующим приемом подбора значений переменной в неравенстве. Пусть дано неравенство 7 ∙ х < 70. Сначала устанавливают, при каком значении х данное произведение равно 70 (при х=10). Чтобы произведение было меньше, чем 70, следует множитель брать меньше, чем 10. Учащиеся выполняют подстановку чисел 9, 8 и т. д. до нуля, вычисляют и сравнивают полученные значения выражения с заданным (70) и называют ответ.

Однако в процессе работы над неравенствами с переменной учащиеся, подставляя различные значения переменной, накапливают наблюдения и убеждаются в том, что равенства и неравенства бывают как верные, так и неверные. Такой подход к раскрытию понятий определяет соответствующую методику работы над неравенствами, .

Упражнения с неравенствами закрепляют вычислительные навыки, а также помогают усвоению других арифметических знаний. Например, подставляя различные числовые значения компонентов, дети накапливают наблюдения об изменении результатов действий в зависимости от изменения одного из компонентов.

Здесь уточняются знания детей о конкретном смысле каждого действия (так, подставляя значения вычитаемого, дети убеждаются в том, что вычитаемое не больше уменьшаемого на области целых неотрицательных чисел и т. п.). Подбирая значения буквы в неравенствах и равенствах вида: 5 + х = 5, 5-х = 5; 10 ∙ х =10, 10 ∙ х < 10, учащиеся закрепляют знания особых частных случаев вычислений. Работая с неравенствами, учащиеся закрепляют представление о переменной и подготавливаются к решению неравенства в V классе.

Страницы: 1 2 

Материалы о воспитании и обучении:

Изучение приложения производной в курсе школьной математики
Понятие непрерывной функции Остановимся на понятии непрерывной функции: функция стремится к числу при (), если разность сколь угодно мала, т.е. становится меньше любого фиксированного при уменьшении . Нахождение числа по функции называется предельным переходом. Этим названием уже пользовались, дава ...

Работа логопедической службы МДОУ с родителями
Совместная работа логопеда с родителями определяет общий успех коррекционного обучения. Логопед систематически встречается с родителями, информирует их об успехах и трудностях в работе с детьми. С этой целью проводятся: родительские собрания, консультации, открытые логопедические занятия, семинары ...

Формы и методы работы классного руководителя с семьей ученика
Эффективность воспитания ребенка сильно зависит от того, насколько тесно взаимодействуют школа и семья. Ведущую роль в организации сотрудничества школы и семьи играют классные руководители. Именно от их работы зависит то, насколько семьи понимают политику, проводимую школой по отношению к воспитани ...

Мотивация в процессе обучения

Мотивация в процессе обучения

В организации современного учебного процесса большую роль играет мотивация студентов. Мотивация студентов является одной из самых сложных педагогических проблем настоящего.

Навигация

Copyright © 2021 www.lavill.ru